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SUMMARY

The results of bending tests on six multiweb beams of optimum weight-

strength design are presented. The internal structure of the beams con-

sisted of various combinations of two types of full-depth solid webs and

a post-stringer web. The observed structural behavior, buckling load,

and failing load of the beams are compared with results obtained by the

use of existing methods of analysis and found to be quite predictable.

INTRODUCTION

Various schemes for supporting the covers of aircraft wings are in

general use and considerable effort is often required in order to deter-

mine the supporting structure that should be employed in a given design.

Weight-strength diagrams provide a rational basis for selecting a sup-

porting structure but the computations necessary to construct such a

diagram usually make use of expedient assumptions that may affect the

validity of the computations in regions of optimum design where every

component of the structure is being worked to its limit. Confidence in

the diagrams can be bolstered appreciably, therefore, if they are veri-

fied by the results of a few tests on structures closely simulating those

predicted by the diagrams, and such tests often supplement analytical

weight-strength analyses.

Wings of skin-stringer-rib construction are lighter than those of

multiweb c_nstructlon if the design requires deep wings. If the design

requires shallow wings multiweb construction is the lighter, and at some

range of intermediate depths designs of nearly equal weight result. Fur-

thermore, in this intermediate range, a design of equally light weight can

be obtained with a type of construction employing a combination of skin-

stringer construction and multiweb construction (see ref. I). Wings of
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this construction are called multipost-stiffened wings and have the advan-
tage of providing greater accessibility to the interior of the wings during

fabrication than either skin-stringer or muitiweb construction by itself.

The general problem of multipost-stiffened wings is treated theoreti-

cally in references 2 to 5 and design charts are presented in reference 5

which facilitate considerably the design of a class of multipost-stiffened

wings in which alternate full-depth webs of a multiweb wing are replaced

by stringers and posts. References 1 and 6 report some tests on three-

web beams with the middle web replaced by posts and stringers. The con-

clusion drawn from the results of each set of tests is that the experi-

mental results are fundamentally in agreement with the theory presented

in references 4 and 5.

The present paper reports the results of tests on 6 seven-web beams

subjected to bending. The supporting structures of the beams feature

two types of full-depth solid webs and combinations of these webs and

post-stringer webs. The beams are of nearly optimum design for a given

ratio of beam depth to face-sheet thickness and thereby provide a severe

check on the reliability of weight-strength computations for such

structures.

SYMBOLS

A

AC

Ai

bS

c

E

h

cross-sectional area of test bea_ effective in resisting axial

or bending loads, sq in.

cross-sectional area of that part of test beam considered to

be compression cover and supporting structure, including

equivalent area of posts, sq ir_.

cross-sectlonal area per chordwi_e inch of multiweb beam con-

sidered to be compression cove_ and supporting structure, in.

web spacing, in.

distance from neutral axis to extreme compression fiber of

beam, in.

Young's modulus, ksl

beam depth measured from outside of compression cover to out-

side of tension cover, in.

moment of inertia of test beam, in. 4



M e

Mf

Mf, calc

M i

P

tS

tT

tW

c_

c2

Ecr

acr

equivalent applied moment, in-kips

equivalent applied bending moment at beam failure, in-kips

calculated bending moment at beam failure, in-kips

bending moment at failure per chordwise inch of multiweb beam,

kips

applied Jack load, kips

thickness of compression coverj in.

thickness of tension cover, in.

web thickness, in.

width of tension and compression covers of test beams, in.

web stress-distribution coefficient

unit shortening

strain at which tangent modulus equals one-half secant modulus

computed strain in compression cover when cover buckling

occurred _ ksi

stress in compression cover when cover buckling occurred_ ksi

TEST SPECIMENS

The test specimens consisted of six multiweb beams fabricated from

707_-T6 aluminum alloy. The beams were lO inches deep with internal

supporting structures (webs) that varied from beam to beam. The three

types of webs used are shown in figure i. They include two types of

conventional full-depth webs and a post-stringer web composed of inverted

hat-shaped stringers and small channel-shaped posts spaced at 6-inch

intervals along the beam. The posts were connected to the stringers by

means of a single snug-fitting aircraft bolt. (See figs. i and 2.) The

post-stringer webs were only slightly heavier than the conventional webs

with an angle connector and were somewhat lighter than the conventional

webs with a tee-cap connector.



The arrangement of the webs in each be_ is shown schematically in

figure 3- These arrangements were chosen in order to study (1) the effect

of replacing one-half or two-thlrds of the conventional webs of a multi-

web beam with post-stringer webs and (2) the utility of an angle connec-

tion as opposed to a tee-cap connection between conventional full-depth
webs and the covers of multiweb beams. Pertinent dimensions of the beams

are given in table I.

Beams i and 4 were designed to have nearly optimum proportions for

a ratio of beam depth to compression-cover thickness h_s of 40. This

value was chosen as representative of the range in which post-strlnger

webs compete with solid conventional webs. The relative efficiency of

three sections, two of which are representative of those of beams 1

and 4, is given in figure 4 by plots of M_/A i against Mi_ 2. The

curves are for beams of optlmumproportions from a welght-strength point

of view and were obtained by using the procedures established in refer-

ence 7 with one exception. A value of 1/6 _as used for the web stress-

distribution coefficient _ instead of the value of 1/4 used in refer-

ence 7. The value 1/6 corresponds to a linear (Mc/I) stress distribution.

For all practical purposes the value 1/6 is consistent with the observa-

tion, which forms the basis of the procedure of reference 7, that the

cover fails when the edge strain reaches ¢2" That is, the amount of

nonlinearity in the stress-strain curve for the structural aluminum alloys

is small for strains less than c2 (see ref. 8), and the use of a linear

stress distribution should represent quite accurately the stress field in

the webs at failure. This expectation is substantiated by the results of

the present investigation as well as by those of reference 7.

The three sections considered in figure 4 are nearly equally effi-

cient, as indicated by the closeness of the various curves. Beam propor-

tions are different for each value of M i in figure 4. The main

variable is bs/ts, which decreases as _/h 2 increases. The web thick-

uess also varies, being only great enough, at any value of Mi_2,- to

prevent web crushing and web buckling. Va]ues of M i associated with

a value of bs/t s of 29 (the value used ir the test beams) are indicated

by the vertical lines in figure 4.

Beams with a value of bs/t S of 29 were chosen for testing in

preference to beams with a larger value of bs/t S which would have been

Just as efficient strengthwise (note that beams with bs/t s of 29 are

somewhat to the right of the maximum of the curves of fig. 4). Beams

with a larger value of bs/t S would have experienced more buckling at
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loads near maximum load. More buckling might be less desirable for some

applications, particularly if it were to occur below limit load or if it

were to reduce the torsional stiffness of the structure to an intolerable

level. A value of tw_ S of 0.45 was computed as the minimum value that

should be used for beams of the proportions tested. The use of a smaller
!

value could lead to designs having excessive web buckling, which might

induce a premature failure. A nominal value of 0.41 was actually used in

order that sheets of standard gage could be utilized.

The post-stringer webs of beams 2, 5, 5, and 6 were designed,

according to the design charts of reference 5, to be functionally equiva-

lent to the solid webs which they replaced. They were designed to have

adequate stiffness to provide the equivalent of simple support to the

cover along the line of attachment between the cover and the post-stringer

web. In addition, the posts were designed to have adequate column strength

to carry the crushing loads induced by beam curvature. The area of post

required for each of these functions was so small that posts with an area

about an order of magnitude larger than the calculated area were actually

used in order that members of practical size could be used.

TEST PROCEDURE

Photographs of typical test setups are shown in figures 5 and 6.

The principal components of the setups are: (1) the test beam, (2) the

loading frame, (3) the loading jack, (4) the counter balancing system,
and (5) the data recorder.

The setups of figures 5 and 6 differ mainly in that the direction

of applied load in one case is vertical (fig. 5) and in the other case

is skewed 22 ° from the vertical (fig. 6). Beams 1 and 2 were tested in

the rig as illustrated in figure 5. Thebendlng deformation of these

beams at loads near failure caused a rotation of the loading frame as

depicted (somewhat exaggerated) in the sketch of figure 7, which neces-

sitated moving the loading jack in the course of the test of beam 2 in

order to keep the ram of the Jack in contact with the loading pedestal.

Moving the Jack was avoided in the remaining tests by poising the

Jack at an angle which kept the relative motion between the Jack and

loading pedestal small. However, in this case the rig applies a ten-

sion load to the test beam as well as a bending load, and beams 3 to 6

were fabricated with a heavier tension cover to accommodate the additional

load. The rig also applies a small vertical shear load to the test beam,

which is proportional to the deflection of the tip (end nearer loading

frame) of the beam. The shear load is resisted by a correspondingly

small moment in the beam which subtracts from the applied moment and which



varies linearly along the beamfrom zero at the tip of the beam. As a
consequence, buckling and failure usually emanatedfrom the region near
the tip of the beams.

The presence of stray loads in the test beamswas minimized as far
as practicable by employing rollers between moving surfaces and by counter-
balancing fixtures near their center of gravity. Rollers were used between
the loading frame and the floor supports as well as between the loading
frame and the testing machine to allow the beamsto shorten during loading
and to restrict the loads at these locations to normal loads. The roll-
ers were case hardened, as were the surfaces against which they reacted.
Stray loads not eliminated by counterbalancing and by the use of rollers
were considered in reducing the data, including a 4-percent correction
for friction which has been determined to be a representative value for
the loading frame.

Resistance-type wire strain gages were mounted at various locations
on the beamsprior to testing, and strains from the gages were autographi-
cally recorded during each test with a 24-channel strain recorder. Two

types of gages were used. Gages with a 13/16-inch gage length were used

on the compression cover of the beams to detect local buckling, and were

also used on the stringers of the post-stringer webs and on the attach-

ment angles of the solid webs to indicate the stress in these members.

Gages with a 6-1nch gage length were used on the tension cover and on

the compression cover near lines of internal support to indicate the

deformation and stress distribution of the beams.

The tip deflection of some of the begins was autographically recorded

as a function of load by the use of resistance-type wire strain gages

mounted on small cantilever beams whose deflection was equal to that of

the test beam. These measurements were u_3ed in determining the vertical

shear acting on the beams, as discussed e_rlier.

TEST RESULT3

Information that is useful in assessing the behavior of a structure

includes the response of the structure to load (which is best indicated

by a load-deformation curve), the buckling stress and buckling mode, and,

the failing stress and failing mode. Dat_ on each of these structural

phenomena were obtained.

Load-Shortening _urves

Plots of Jack load against unit shortening of the compression and

tension covers of each of the test beams are given in figure 8. Unit
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shortening for the compression covers was taken from the data obtained

with 6-inch strain gages located near the support lines of full-depth webs

where nodal lines in the buckling pattern were expected. Unit shortening

for the tension covers was taken from data obtained with strain gages

located some distance from lines of web support, away from the influence
of rivet holes.

The difference in slope between the tension and compression curves

for beams 3 to 6 results from dissymmetry of the beams (tension cover

heavier than c_npression cover). The difference in slope is not large.

It is less than it would have been if the beams had been tested in pure

bending, without end thrust. Consequently, beam behavior, insofar as

the compression cover and its supporting structure are concerned, is

nearly equivalent to that of a beam with a tension cover equal to the

compression cover and loaded in pure bending.

Plots like those of figure 8 are not well adapted for use in

assessing beam behavior or in comparing the behavior of one beam wlth

another. Figure 9 has been prepared for this purpose. For beams 1 and 2,

the moment M e in figure 9 is simply the applied moment. For beams 3

to 6, it represents the applied moment reduced by an amount that compen-

sates for the tensile load acting on the beams. The section modulus I/c

used in preparing figure 9 is the value computed for the unbuckled elastic

structure. Use of this value after initial buckling gives stresses

that are nearly a weighted average of the stresses in the compression
cover and attachment members. This value is.used here rather than a

value which gives the average stress in the compression cover or a value

which gives the stress in the cover along lines of attachment (so-called

edge stress) in order to present load-shortening curves which are as free

as possible of computation, yet retain a high degree of usefulness. Other

values of the section modulus depend upon the effectiveness of the buckle8

plate in resisting compression; that is, they depend upon effective-width
calculations.

The slopes of all the curves in figure 9 are nearly equal to one

another and to Young's modulus E which attests to the validity of the
curves as well as to the rational behavior of the beams. The curve for

beam 1 is shown dashed above a stress _ of about 44 ksi. At this point

in the testing of this beam the load axis of the recording equipment mal-

functioned, and thus the only data available for constructing the dashed

portion of the curve was the load at failure, which was read directly

from the testing machine, and the strain at failure (the strain axis of

the recording equipment continued to function).

The curves of figure 9 terminate at beam failure. The edge strain

(strain in compression cover near lines of web support) at failure was

in each instance approximately g2' which for 7075-T6 aluminum-alloy



8

sheet is taken to be 0.00649. (See ref. 8.) The largest deviation from
c2 at beamfailure was observed in beaml, which failed when the edge
strain was approximately lO percent less than c2.

Buckling

Each of the beams experienced local buckling of the compression

cover at a moment lO to 19 percent less than that required for failure

of the beam. The buckle pattern was in each case characterized by nodal

lines along each web, with successive in-and-out buckles along and across

the beam (local buckles).

Experimental buckling stresses obtained by the strain-reversal method

(see ref. 9) are indicated in figure 9 by short horizontal dashed lines.

No buckling stress is indicated for beam 1 because the recording equip-

ment malfunctioned in testing this beam bef(,re strain reversal occurred.

The test log for this beam indicates that buckling was observed shortly

before failure.

The proportions of the solid-web test beams are such, neglecting

whatever effect the attachment members may have on buckling, that the

webs should initiate buckling. (See ref. lO.) Accordingly, the webs

were observed to buckle earlier than the covers of the test beams. How-

ever, web buckling is not indicated in figure 9 because the instrumenta-

tion of the webs was inadequate to record their buckling.

Experience in testing solid-web beams has demonstrated that the

buckling stress of the compression cover as determined by strain reversal

is relatively unaffected by small amounts of web buckling. (See ref. ll.)

This fact is exemplified by the present tests and is illustrated in fig-

ure 9, where the buckling stresses of the beams may be compared with

buckling strains (short vertical dashed lines) computed on the assump-

tion that the webs provided simple support to the covers along lines of

attachment. It should be emphasized that _e post-stringer webs were

designed according to reference 5 to provide simple support to the cover.

Figure 9 indicates that the test beams buckled at stresses either very

close to, or somewhat greater than, the stress corresponding to computed

buckling strain.

Failure

A comparison between calculated and experimental moments at failing

is given in table II. Good agreement is indicated. The calculations

were made by the procedure of reference 7, _hich applies to beams that

fall by local crippling - that is, beams on which the attachment between

the covers and webs is of sufficient stiffness and strength to prevent
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other modes of failure at lower loads, such as wrinkling and interrivet

buckling as well as actual rivet failures. A web stress-distrlbution

coefficient m of 1/6 was used in the computations.

Photographs of the test beams after failure are given in figures lO

to 19. It is evident that failure was in every case accompanied by rivet

fractures and in some cases by considerable tearing or shearing of the

compression cover. These accompanying phenomena are believed to be sec-

ondary failures associated with the large deformations of the structure

as it experienced a local crippling failure (failure resulting from the

growth of local buckles). Rivet strength is not believed to have had a

marked influence on the strength of the beams in view of the fact that

the deformations at failure (see fig. 9) as well as the load at failure

(see table II) were consistent with predictions for the local crippling

type of failure. This conclusion is further supported by the fact that

the failures of all the beams were predicted with about the same accuracy,

even though some of the beams had weaker riveting and more broken rivets
at beam failure than the rest.

DISCUSSION OF RE_JLTS

Behavior of the test beams was essentially in agreement with predic-

tions. Response of the beams to load was linear and predictable until

local buckling occurred in the compression covers of the beams. Local

buckling occurred when the compressive stress in the cover reached the

buckling stress for a simply supported plate. After local buckling,
response of the beams to load was nonlinear and failure occurred as

expected when the edge strain reached approximately c2. One of the

beams failed at an edge strain approximately lO percent less than _2"

The resulting error in failing stress or failing moment was quite small

because the slope of the load-shortening curve Just prior to failure is
small.

A comparison of the results for beams i to 5 with those for beams 4

to 6 is interesting. Beams 1 to 3 had angle connectors and beams 4 to 6

had tee-cap connectors between the covers and webs of the beams. Some

manufacturers use the tee-cap connector to bolster the buckling and

failing stress of built-up multiweb beams such as those tested, even

though the angle connector is preferred from a fabrication point of view.

However, in the present tests the tee-caps were little, if any, better

than the angles in deterring local buckling or in increasing the failure

stress. This result should not be interpreted too generally. A sta-

bilizing effect might be obtained by substituting tee-caps for angles in

beams which have heavy webs and connectors and light cover skins or in

beams for which a wrinkling type of failure is expected. (See ref. 12.)
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Nevertheless, the lack of a stabilizing effect in the present tests indi-
cates that the crippling strength of strongly riveted beamsof optimum
design can be achieved with the use of angle connectors.

Values of A C are given in table II for each of the test beams.

Beams with half of the webs of post-stringer construction are in each

instance more efficient than the corresponding beams with all conven-

tional webs. Furthermore, the beams with two-thirds of the webs of post-

stringer construction are Just as efficient as those with half of the

webs of post-stringer construction. This result suggests that the design

charts of reference 5 can be used to design beams with two-thirds of the

webs of post-stringer construction if proportions are used such as those

considered herein, which, according to the charts, provide the equivalent

of simple support to the covers. The use of more post-stringer webs is

usually avoided because full-depth webs are required to supply shear

stiffness and shear strength. The values cf _/A c in table II differ

considerably from the values of _I/Ai in figure 4. If those in table II

are multiplied by _ to make the--_two more comparable, nearly equal values

will be obtained.

SLMMARY OF RESULTS

Results of bending tests on six multiweb beams with various types

of internal construction (webs) have been _resented. The beams were of

nearly optimum design from a weight-streng%h point of view for a ratio

of beam depth to compression-cover thickness of 40. The following results

were obtained:

i. Existing methods of analysis were adequate for predicting struc-

tural behavior, local buckling, and failure of the beams.

2. Test beams with one-half or two-thirds of the webs of post-

stringer construction and the rest of the _ebs of conventional construc-
tion were at least as efficient as test be_s with all conventional webs.

3. Built-up multiweb test beams with E_.nangle connector between the

web and the compression cover were Just as efficient as test beams with

a tee-cap connector in resisting local buc}ling or failure.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., February 9, L959.
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TABLE II

TEST RESULTS

Beam

1

2

5

4

5

6

Mf, in-klps Mf,calc , in-kips

6,500

6,940

7,520

7,480

7,740

7,580

6,640

6,850

7,090

7,410

7,560

7,190

Mf_calc

Mf

1.02

.99

.94

-99

.95

.95

AC

4.25

4.62

4.79

4.25

4.76

4.70
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Figure 1.- Webs used in test beams.
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Beam I Beam 4
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Beam 2 Beam 5
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Figure 3.- Arrangement of webs in test beams.



17

_2

e_

o

I //

0

0 "_ 0

i , L J I i , J b J , , L , i J i I L i , J I , L , L

N

0

0

0

0

o

_-i7:

!

o

>
0
o
I

0

©

o

o

o

0

+___-

0

cn

ID

0

N}

I1)

,r-t

!

A
11)



18

©

C_
!

o

0

-0
I1)
m

4._
m

!

u'N

©

°r-I



19

L_
CO

!

O_

C_
C_J

!

b-
L_

!

0
+-_

_J

0

4-_
©

!

_,D



2O

/

// \
/ /

J�
/ /

ii//i

I i
/

/
/

/
/

/
/

/

/

o
o

0
,t-I

r-I

r-t
(II

4_
ul

I

0

_0

-Or-I

u

4_

I

!
_4



21

I

\
\\

0 0 O 0

gO I'--- _ L,O

o

- Q.
t'_ .--

8

Eo
o _-

I

\

0 0 0 0
r_ o,I --

_L
8
o

,.l:n

.._

q-.-i
o

o

o

ol
ID

o

o

01

-o

(D

-o

o

r/l

.r-I

o

%
0

!

0

!



22

\

\
\ I

\ !

\

o

Ib

r_
o

o
o

o

©

o

o

-r-I

.r-.I

4._

0

!

o
,-t

o

o

4._

h

r-t

I

d,
11)



23

0

C_
I

A

0

-r4
_3

!

c;



24

co
cO
C_

!

0

©

I

,--4



2_

cO

cO
c_

|

I

,.Q

o

©

r"-I

c_

I



26

cO
O
O
_-_
I

I

CH
O

.r-I

I

r--I

_J

°r-I



£7

H

4
cO
G]
LP_

I

Lf_
!

I--q

©

O

r---t
°r-t

!

_#
i-t

or-t



28

c'q
r-q

!

!

©

0

CO

!

NASA-L_gl_y Ft_td, v,. L-_85


